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".......the efforn to produce accommedation (focus) usually results in some degree of con-
vergence (depth perception), even when one eye is covered - the so-called accommodation-
convergence-synkinesis. It exists even in pcople who never had binocular vision......"

Gerald Westheimer, The Eye, [17)

Abstract

Rough surfaces pose a challenging shape extraction problem. Images of rough sur-
faces are often characterized by high frequency intensity variations, and it is difficult to
perceive the shapes of these surfaces from their images. The shape-from-focus method de-
scribed in this paper uses different focus levels to obtain a sequence of «bject images. The
sum-modified-Laplacian (SML) operator is developed to compute local measures of the qual-
ity of image focus. The SML operator is applied to the image sequence, and the set of focus
measures obtained a. cach image point are used to compute local depth estimates. We present
two algorithms for depth estimation. The first algorithm simply looks for the focus level
that maximizes the focus measure at each point. The other algorithm models the SML focus
measure variations at each point as a Gaussian distribution and use this modzl to interpolate
the computed focus measures to obtain more accurate depth estimates. The algorithms were
implemented and tested using surfaces of different roughness and reflectance properties. We
conclude with a brief discussion on how the proposed method can be applied to smooth
textured and smooth non-textured surfaces. / .
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1 Introduction

1.1 Motivation

The advancement of three-dimensional machine vision is largely dependent on the develop-
ment of efficient and reliable shape extraction methods. Shape extraction, in turn, requires
a sound understanding of various surface reflection mechanisms and the image formation
process. Many extraction methods, for diffuse and specular surfaces, have been developed
in the past. However, the extraction problem associated with rough surfaces has not received
sufficient attention. All surfaces encountered in practice are rough at some level detail. At
that level, they exhibit high frequency spatial surface variations that are often random in na-
ture. In many vision applications, the spatial surface variations are comparable in dimencions
to the viewing area of individual picture elements of the imaging sensor. Hence, image in-
tensities produced by such surfaces vary in an unpredictable manner from one sensor element
to the next, and it is difficult tc obtain dense and accurate surface shape information by using
existing techniques, such as, structured light, shape-from-shadirg, stereopsis, etc. Therefore,
a practical and reliable solution to this rather difficult extraction problem is desirable.

1.2 Background

We propose 10 use focus analysis to recover the shape of surfaces. Previously, focus analysis
has been used to automatically focus imaging sysiems and obtain sparse depth information
from the observed scene. Horn [1] proposed focusing imaging systems by using the Fourier
transform and analyzing the frequency content in the image. Tenebaum [2] developed the
gradient magnitude maximization method that uses the sharpness of edges to optimize focus
quality. Jarvis [3] proposed the sum-modulus-difference that is computed by summing the
first intensity differences between neighboring pixels along a scan-line and is used as a
measure of focus quality. Schlag et.al. [4] implemented and tested various automatically
focusing algorithms.

Mcre recendy, Krotkov [5)[6] evaluated and compared the performance of different
focus criterion functions. Krotkov also proposed a method to estimate the depth of an image
area. Pentland (7] suggested the evaluation of image blur to determine the depth of image
points. Grossmann [8] has proposed the estimation of depth of edge points by analyzing the
blur of the edges due to defocusing. Darrell and Wohn [9] have developed a depth from
focus method that obtains an image sequence by varying the focus level and uses Laplacian
and Gaussian pyramids to calculate depth. Subbarao [10] suggests the change of ir:rinsic
camera parameters to recover the depth map of a scene. Ohta et.al. [11} and Kaneda et.al.
(12] have used images corresponding to different focus levels to obtain a single level of high
focus quality.




1.3 Proposed Approach

In this paper, we develop a shape-from-focus method. We start by defining visibly reugh
surfaces that produce textured images with high frequency intensity variations. We review
the image formation process and show that a defocused imaging system plays the role of
a low-pass filter. The shape-from-focus method moves the unknown object with respect to
the imaging system and obtains a sequence of images that correspond to different levels of
object focus. The sum-modified-Laplacian (SML) focus operator is developed to measure
the relative degree of focus between images. The operator is applied to the image sequence
to obtain a set of focus measures at each image point. The focus measure values at each
point are modeled and interpolated to obtain accurate depth estimates. Experimental results
indicate that the method is capabie of extraciing dense and accurate shape information with
appreciable invariance to texture strength and type.

Though the shape-from-focus method is developed with the intention of extracting the
shape of rough surfaces, it can also be applied to smooth surfaces that are textured as a result
of varations in surface reflectance properties. Smooth surfaces that do not have textures can
also be handled by illuminating these surfaces with high resolution light patterns to produc=
textured images.

2 Visibly Rough Surfaces

In the study of reflection. a rough surface is defined as one whose smallest spatial variaiions
have dimensions that are much larger than the wavelength of the incident electromagnetic
wave. This is the concept of optical roughness. In this paper, we introduce the notion
of visible roughness, a surface is considered to be rough if the dimensions of its spatial
variations are comparable to the viewing area of individual elements (e.g. pixels) of the
sensor (e.g. camera) used to observe the surface. The surface shown in Fig.1 is composed
of a large number of facets’. While the surface appears to have a smoothly varying globa)
shape, z(x, y), the orientation o of individual facets may deviate substantially from the mean
surface orientation in the facet vicinity. Although the facet orientations are dependent on the
global shape of the surface and on the orientations of neighboring facets, they may exhibit
some degree of randomness.

Now let us consider the images of rough surfaces generated by using a finite resolution
sensor. The number of facets that contribute to the image irradiance at a pixel location
depends on the magnification of the optics used to project the surface onto the image plane
of the sensor. We define two levels of magnification; multi-facet level and face: level. At the

'No assumptions are made regarding the size of the facets. Hence, these facets may or may not represent
the mucro-facets defined in [13], (14).
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Figure 1: Rough Surface.

muld-facet level, the pixel width w is very large compared to the facet size wy (i.e. w = w).
In this case, the surface patch projected on a pixel may be modeled by assigning it a mean
orientation value and a roughness which is determined by the probability function of its facet
orientations [13] [14]). The pixel intensities are continuous functions of the angle of incident
light and can be expressed as a linear combination of the diffuse lobe and specular lobe
components [14], the relative strengths of the two components depending on the reflectance
properties of the facets.

At facet level magnification, on the other hand, the pixel width w is comparable to
the facet width wy (i.e. w = w;), and only one or few facets are viewed by each pixel. As a
result of the random nature of facet orientations, the image intensity values are expected to
vary substantially and unpredictably from one pixel to the next. This is true for both specuiar
as well as diffuse facets as the radiance of both are dependent on the angle of incident light.
Therefore, at the facet level, the surface produces images that are rich in rexture’ and we
say that the surface is visibly rough. But, why do we use facet level measurements when
muld-facet level measurements will provide us with image intensities that can perhaps be
used to extract shape information? In many practical instances, the desirable resoluton of
shape information is unobtainable at the mult-facet level

2There are many notions of what is meant by the term texture. Here, we define texture as a noticeable
fluctuation in the intensities of neighboring image pixels [16] The textures produced by rough surfaces may
be penodic, nearly periodic, or random. No assumptions are made regarding the type of texture.




3 Focused and Defocused Images

In this section, we briefly review the image formation process and describe defocused images
as processed versions of focused images. There are two approaches to the study of optce.
and hence, also to the analysis of the image formation process. The physical optics approach
1s based on electromagnetic wave theory {6], and it analyzes diffraciion effects to derive
an exact image formation model. Geomerrical optics, on th: other hand, uses the short
wavelength of light to simplify the analysis, and the resulting image formation model may
be viewed as an approximation to the corresponding physical optics model. Since our senscr
(i.e. CCD camera) lacks sufficient spatial resolution to make diffraction effects significant,
we confine ourselves to the geometrical analysis.

Fig.2 shows the basic image formation geometry. All light rays that are radiated by
the object P and intercepted by the lens are refracted by the lens to converge at the point
Q on the image plane. The relationship between the object distance o, focal distance of the
lens f, and the image distance i, is given by the Gaussian lens law:
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Each point on the object plane is projected onto a single point on the image plane, thus
causing a clear or focused image I{x,y) to be formed on the image plane. If, however, the
sensor plane does not coincide with the image plane and is displaced from the image plane
by a distance ¢, the energy received from the object by the lens is uniformly distributed over
a circular® patch on the sensor plane. Fig.2 may be used to establish the relationship between
the radius r of the circular patch and the sensor displacement é. By using similar wriangles.
we find that:
¢R
0
where R is the radius of the lens. It is also possible to convince oneself that the radius r of
the circular patch is independent of P’s location on the object plane. Therefore, the blurred
or defocused image /4(x.y) formed on the sensor plane can also be obtained by convolving
the focused image /Ax,y) with a circular symmetric function p(x,y) of unit volume, called
the "pillbox"” function:

r = (2)

Lix,y) = p(x,y) *» I{x,y) (3)

where:
=L ey <

0 otherwise

plx,y) = 4)

3Tne shape of the paich also depends on the shape of the aperture of the imaging system. We are assuming
the aperture to be curcular.
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Figure 2: Formation of focused and defocused images.

Note that the defocusing effect is observed for both positive and negative sensor displace-
ments.

Now let us analyze the defocusing process in the frequency domain (u.v). If Tp(u. vy,
P(u.v), and Ip(u. v) are the Fourier transforms of I{x.y), p(x,y), and la(x.y), respectvely,

we can express eq.3 as:
Ip(u.v) = P(u,v). Ip(u.v) (5)

The pillbox function p(x.y) is a rotationally symmetnic function. a- :ne Founer
transform of rotationally symmetric functions can be computed as a single in: instead of
a double integral by using the Hankel wansform. If we define p = Vi# +?, - an express

P(u.v) in polar coordinates as: s
= 2J(rp)
P(p) = ———
) (rp)

where J,(rp) is the first-order Bessel function. The quantity J,(rp)/(rp) plays the same role in
two dimensions as the “sinc” function does in one dimension. P(p) is a rotationally symmetric
function of which a one-dimensional section is shown in Fig.3. P(p) allows low frequencies
of Ie(u. v) to be passed unattenuated while it atenuates higher frequencies. Hence, we sce
that defocusing is a low-pass filtering process.

6)
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Figure 3: One-dimensional section of P(p).

Due to the sharp cut-off of p(x.y), P(p) oscillates about zero and the amplitude of
oscillation decreases asymptotically as (rp) /2. The first zero of P(p) occurs at rp = 3.8317].
Therefore, as the sensor displacement ¢ increases, the defocusing radius r increases, and a
smaller range of low frequencies is contained in the defocused image.

From Fig.2, it can be seen that a defocused image of the object can be obtained in
three ways: by displacing the sensor with respect to the image plane, by moving the lens, or
by moving the object with respect to the object plane. Moving the lens or sensor plane with
respect to one another causes the following problems:

o The magnification of the system varies, thereby causing the image coordinates of the
object points to change.

e The area on the sensor plane over which light energy is distributed varies, thereby
causing a variation in image brightness.

In order to overcome these problems, we propose to vary the degree of focus by
moving the object* with respect to a fixed configuration of the optical system and sensor.

‘Object movement 1s easily realized in industrial inspection applications.
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This approach ensures that the focused areas of the image are always subjected to the same
magnification.

4 Shape from Focus: An Overview

The shape-from-focus method is based on the observations made in the previous sections.

o At the facet level magnification, rough surfaces produce images - zt are rich in texture.

o A defocused optical system plays the role of a low-pass filter

Fig.4 shows a rough surface of unknown shape placed on a t:nslatonal stage. The
reference plane shown corresponds to the initial position of the stage. Tne configuration of the
optics and sensor define a single plane, the "focused® plane.” that is perfectly focused onto the
sensor plane. The distance d; between the focused and reference planes, and the displacemen:
d of the stage with respect to the reference plane, are always known by measurement. Le:
us focus our attention on the surface element, s, that lies on the unknown surface, S. If the
stage is moved towards the focused plane, the image will gradually increase in its degree
of focus (high frequency content) and will be perfectly focused when s lies on the focused
plane. Further movement of the element s will again increase the defocusing of its image
If we observe the image area corresponding to the s and record the stage displacement d = d
ar the instant of maximum focus, we can compute the height d, of s with respect to the stage
as d, = dy - d. In fact, we can use the value of d to determine the distance of s with respect
to the focused plane, sensor plane, or any other coordinate system defined with respect 1o
the imaging system. This approach may be applied independently to all surface elements to
obtain the shape of entire surface S.

To automatically detect the instant of "best” focus, we will develop an image focus
measure. In the above discussion, the stage motion and image acquisition were assumed to
be continuous processes. In practice, however, it is not feasible to acquire and process such
a large number of images in a reasonable amount of time. Therefore, we obtain only a finite
number of images; the stage is moved in increments of Ad, and an image is obtained at each
stage position (d = n.Ad). By studying the behavior of the focus measure, we develop an
interpolation method that uses a small number of focus measures to computie accurate depth
estimates. An important feature of the method is its local nature; the depth estimate at an
image point is computed only from focus measures recorded at tha. point. Consequently, the
method can adapt well to variations in texture type and content over the object surface.

$The focused plane is the same as the object plane defined in the previous section. A different name is used
here as the object does not necessarily lie on the focused plane.
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5 A Focus Measure Operator

In order to measure the quality of focus in a "small” image area, we would like to develop
a focus measure operator. The operator must respond to high frequency variations in image
intensity, and ideally, must produce maximum response when the image area is perfectly
focused. The high frequency content of an image area can be determined by using the Fourier
transform and analyzir: the frequency distributon. However. since Fourier transforms are
expensive to compute -1thout special purpose hardware, we seek an alternative method.

A few focus - asure operators have been proposed and used in the past. Generally,
the objective has beer. 12 find an operator that behaves in a statie and robust manner over a
variety of images such as images of outdoor scenes, text, etc. Such an approach is essential
while developing automatically focusing imaging systems that have to deal with “general”
scenes. Bearing in mind that we are dealing with textured images, we develop an operator
that is partcularly well-suited to such images. In the next section, we will evaluate our
operator and compare it with other ones by using textured imag. samples.

One way to high-pass filter an image is to determine its second derivauve. For
two-dimensional images, the Laplacian is very often used:

&1 &l

2
I = — + — 7
A £ 5y (7
where I(x. y) is the image intensity at the point (x,y). We note that in the case of the Laplacian
the second derivatives in the x and y directions can have opposite signs and tend to cancel
cach other. An example of such an instance is illustrated 1n Fig.5; the partal derivatives
are equal in magnitude but opposing in sign, i.e. A’ = 0. In the case of textured images,

this and similar instances may occur frequently, and the Laplacian is prone to »+have in an

unstable manner. We overcome this problem by defin.- 3 the modified Lapla: . :s:
&1 -t !
Ayl = || + = 8

Note that the modified Laplacian is always greater or equal in magnitude i« = Laplacian.
The discrete approximation to the Laplacian is usually a 3x3 operator. Inorc > accom™o0-
date for possible varations in the size of texture elements, we compute the p -~ .. derivanves
by using a variable spacing (szep) between the pixels used to compute the derivanves. Hence,
the discrete approximation to the modified Laplacian is computed as:

ML(x,y) = | 2l(x,y) — I(x — step, y) — I(x+step, y) | + 9)
[ 2I(x,y) — I(x, y — step) — I(x, y + step) | (10)
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Figure 5: A texture instance with zero Laplacian value.

Finally, the focus measure at a point (i) is computed as the sum of the modified Laplacian,
in a "small" window around (i), that are greater than a threshold value:

i+N j‘N
Fa.p)p = Y. > MLxy) forMLxy) 2T, (11
x=i-N y=j-N

where, the parameter N determines the window size used to compute the focus measure. In
contrast to automatically focusing methods, we typically use a small window of size 3x3 or
5x5,ie. N=1or N =2. We shall refer to the above focus measure as the sum-modified-
Laplacian (SML).

6 Evaluating the Focus Mcasure

We evaluate the SML focus measure in three stages. First, we analyze its behavior as a

functon of the distance between the observed surface and the focused plane. Next, we see h
how the SML measure is affected by the selection if its parameters step and T;. Finally, we
compare the performance of the SML operator with other operators used in the past. .

A detailed description of the experimental set-up is given in a later section. In the
following experiments, texture samples are attached to a translational stage (Fig.4) and the
distance, d,, from each sample to the stage is known by measurement. Images of the samples

10
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are obtained using a microscope and a 256 x 256 pixel CCD camera. The complete imaging
svstem has a physical resolution of approximately 1um per pixel width.

In Fig.6, the focus measure functions of two samples are shown. Sample X has high
rexture content while sample Y has relatively weaker texture. Both samples are made of
a paste containing resin and tungsten particles. The variable size of the tungsten particles
gives the surfaces a randomly textured appearance. For each sample, the stage is moved
i ncrements (Ad) of lpm, an image of the sample 1s obtained, and the focus measure
v computed using an evaluation window size of 10x 10 pixels. The vertical lines in Fig.6
indicate the known initial distances (dy - d;) of the samples from the focused plane. The focus
measures were computed using parameter values ¢f step = 1 and T, = 7. No form of temporal
filtering was used to reduce the effects of image noise, as we intend to use unfiltered focus
measures to estimate the depth of surface points. Though the measure values are slightly
nolsy, they peak very close to the expected peak positions (vertical lines in Fig.6). We sece
that, the focus measure function peaks sharply for the stronger texture and it peaks relatively
slowly and with a lower peak value for the weaker texture. However, the sharpness of
the focus measure function depends not only on the texture strength but also the "depth of
focus” of the imaging system. The depth of focus, in turn, depends on the magnification and
aperture size of the imaging system. We will assume that the depth of focus is constant for
all our experiments.

Fig.7 shows the focus measure computed as a function of the parameter step, for
the sample X shown in Fig.6. Once again, an evaluation window size of 10x 10 pixels and
a threshold value of T, = 7 were used. We see that, for sample X, a maximum measure
value 1s computed at step = 4. However, it may be noted that the effective size of the focus
measure evaluation window increases with the step size. As we are interested in local depth
estimates, step values of 1 oor 2 are gencrally used. Fig.8 shows the effect of varying the
threshold 7. for both focused and defocused images of sample X. A good value of 7T, is
one that produces a high measure value for the focused image and low measure values for
detocused images. From Fig.8 we see that, for sample X, 7; = 7 appears to be a good choice.
However, from a number of unreported experiments, we find that though the peak value of
the focus measure function F{d) varies with the parameter values, the same parameter values
may be used to obtain sharp, unimodal, focus measure peaks for surface elements of varying
degrees of exture content.

In Fig.10), we compare the SML focus measure with three other popular measures:
the Tenengrad, variunce, and sum-Laplacian (SL). All of these measures are defined and
evaluated by Krotkov [S5]. Here, we use four 10x 10 sample windows to compare the mea-
-ures. The ditferences between the four samples are illustrated in Fig.9. Sample A lies on
e edge of awextured surface: only a part of the window has strong texture. Sample B lies
vetanside the edge of the texture. Sample C lies well within edge and sample D lies on a

phace patch that s oriented away from the viewing direction of the camera. Real samples

11
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Figure 6: SML focus measure function computed for two texture samples.
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Figure 8: SML focus measure as a function of the operator parameter T,.
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background -+ texture

Figure 9: Texture samples used to compare focus measure operators.

and images were used to conduct the experiments. Since the comparison graphs are meant
to project the global behaviors of the operators, they are plotted using large incremental
displacements of the stage (Ad = 10um). Therefore, the actual peaks in the focus measure
funcdon can lie between two computed measure values. The measure values produced by
cach operator are normalized by the maximum measure value. Once again, the vertical line
in each graph indicate the known depth of each sample.

The Tenengrad was computed using a threshold valuelS] of T = 1, and the SL and
SML were computed using T; = 7 and srep = 1. We find that the SL and SML measures peak
sharply and close to the expected peak positions (vertical lines). However, for lower measure
values, the SL is more noisy than the SML. For weaker textures than the ones used above,
this causes muldmodal measure functions. The Tenengrad and variance operators produce
relatively weaker modes for sample A as both operators respond to first-order variations in
image intensity. When the texture edge in sample A is defocused, the first-order variations
are strong although the second-order varations are not. As a result, both these operators
produce high measure values while the SL and SML operators do not. Sample B represents
a particularly interesting case. When the edge of the textured surface is highly defocused,
it is also subjected to a different magnification than when it is in focus. Hence, the edge
coordinates change and the image of sample A shifts to the image area of sample B. Since
even the highly defocused image of the edge has substandal first-order intensity variatons,
the Tenengrad and variance operators produce high measure values. This effect is rather
significant when the mean intensities of the textured and background areas are very different.
In such cases, the Tenengrad and variance operators produce bimodal focus measure functions
that result in erroneous depth estimates. From these experiments, we conclude that the SML
operator is best suited for measuring the focus quality of textured images.
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7 Sampling the Focus Measure Function

We can represent the focus measure function of an image point (x,y) as F(x,y,d). Since depth
estimation is a local operation, we will focus our attention on a single image point, bearing
in mind that the same estimation method can be applied to all other image points. Therefore,
we will denote the focus measure function as simply F(d). By studying the variation of F(d)
in Fig.6, we find that F(d) may be assumed to have a Gaussian distribution with mean value
d and standard deviation o (Fig.11). The mean d corresponds to the stage displacement at
which F(d) is maximum, i.e. F(d) = Fpear- As the texture content of the surface element
increases, F,. increases and o decreases. Each surface element, therefore, is expected to
have its own F,.x and of values.

il

'
\
oY ] e i

ds de d, dg

d; d, d; [0

Q.
»

Figure 11: Sampling the SML focus measure function.

If we use very small stage displacement (Ad = 0), the number of images to be ob-
tained and processed is too large from the perspective of practical implementation. Hence,
we use large displacements to obtain a few images of different focus levels and use the
Gaussian model to interpolate the small number of focus measures to obtain depth estimates
at each image point. Computing the focus measure at a finite number of displacements is
equivalent to sampling the function F(d) (Fig.11); at each displacement d; we compute the
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focus measure F(d,) to obtain the set {F(d)) |i=1,2,....M}. We show in the following sec-
tion that a minimum of three focus measures are needed perform the Gauss:an interpolation.
In theory, therefore, depth estimates may be obtained from only three images of the surface.
However, since the Gaussian model only approximates the focus measure function, we use
the condidon of < Ad < 20f to ensure that evaluation of at least one focus mez zre in the
* of range of F(d). Note that displacements are applied to all object points. Therefore, by
applying the above condition to the image point that has maximum texture content, we can
ensure that a few or many focus measures will be computed in the & o range at all image
points.

We note that the value of of also increases with the depth of focus of the imaging
system. Therefore, for objects of larger dimensions also, only a small number of images
may used by increasing the depth of focus.

8 Depth Estimates from Focus Measures

In this section, we describe the estimation of depth of a surface point (x.y) from the focus
measure set {F(d,) | i=1.2....M}. We use the parameter d to represent the depth of the
surface point. For convenience, the notation F, is used to represent the focus measure value
F(d). We present algonithms for two different depth estimation methods- Each algorithm
may be applied to all points in the image to obtain depth maps.

8.1 Coarse Resolution Depth Estimation

The first ulgonthm simply looks for the displacement value d, that maximizes the focus
measure and assigns that value to d.

Algorithm 1

Step 1: Letk =1, Frux = 0.

Step 2: If Fy > Fpmax, Fmax = Fr and d = di.
Step3: f k<M, k=k+ 1, gotostep 2.

Step 4: If F,u, < T3, the point (x,y) belongs to background. Stop.

This simple algorithm may be used to compute rough depth estimates. The perfor-
mance of the algorithm is directly dependent on the selection of Ad.




8.2 Depth Estimation by Gaussian Interpolation

The second algorithm uses the Gaussian distribution to model] the focus measure function
F(d) and interpolates the computed measure values to obtain more accurate depth estimates.
One approach is to fit all computed F; values to the Gaussian model. However, we feel
that more accurate depth estimates can be obtained, while saving computations, by using the
Gaussian distribution to mode) only the peak of F(d). The following algorithm uses only
three focus measures, namely, F,._;, F,, and F,.;, that lie on the largest mode of F(d), such
that, Fn > Fpu_; and Fp, > Fp,; (Fig.12).

Using the Gaussian model, the focus measure function may be expressed as:

=\ 2
1/d -
F = Fpuaexp {—-§<d d) } (12)

gF

where dand orare the mean and standard deviation of the Gaussian distribution (Fig. 15).
Using natural logarithm, we can rewrite Eq. 12 as:

-\ 2
InF = Iancak - "l'(d — d) (13)

2 oF

s

By substituting each of the three measures F,,_;, Fn, and Fn.,, and its corresponding
displacement value in Eq. 13, we obtain three equations that can be solved for d and o
(nFp = InFp))(dn’ = dni®) = (InFp = InFp_)) (dp’ = dei’)

d = : 14
22d{UnFpn — InFp_1) + UnFp — InFp.))) (14)

2 _ (@ = dnt®) + [ ~ dpet)
2{UnFpm — InFp_})) + (InFp ~ InFp.))}

Using Eq. 12, we can find Fp.a from of and d as:

1({d, — d\°
Froi = Fn]exp {-5( ) } (16)

OF

oOr (15)

If F,.at is large and of is small, the focus measure function has a "strong" peak, indicating
high surface texture content in the vicinity of the image point (x,y). Thus, the values of F,..
and or can be used to segment the observed scene into regions of different texture content.

The following algorithm first finds the measures Fp_;, Fpn, and F.; that correspond
to the strongest® peak of F(d) and then uses these measures to estimate the depth d by Gaus-
sian interpolation.

$Due 10 image noise and variations in magnification, the focus measure function may be multi-modal with
onc strong peak and one or more weak oncs.
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Figure 12: Gaussian interpolation of focus measures.

Algorithm 2

Step1: Letk=3,F,_.;=0,Fn=0,Fn,; =0.d.=0.
Step 2: W Fy_y > Fm , Feoy > Fe o and Fiu_y > Fyp, then:
F,. = Fk_},

Fmoy = Fea,

Fm‘/ = Fk.

dm =dl—l-

Step 3: f k<M, k=k+ 1, gotostep 2.

Step 4: d,._, = dn — Ad and dn,.; = d,, + Ad. Determine d, of, and F et using Egs. 14,
15, and 16.

b Step 5: If Fput < T3 or 0f > Ty, the image point (x,y) belongs to background. Stop.

Since the values of F . and of are only useful for texture classification, their eval-
uation may be avoided to save computations.
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9 Experiments

9.1 Experimental Set-up

Fig.13 shows a photograph of the experimental set-up used to demonstrate the shape-from-
focus method. A schematic diagram of the set-up is shown in Fig.14. A microscope is used
to magnify the object surface, and images are obtained using a CCD camera with 256 %256
pixels. Camera images are digitized and processes using a computer. The magnification of
the imaging system can be varied from x5 to x160. The object is placed on a translational
stage that 1s used to move the object through the focused plane of the imaging system. Stage
displacements are monitored using an electronic displacement sensor that has an accuracy
of within 0.1 pum. In most of our experiments, the bright field illumination (Fig.14) of the
microscope was used to illuminate the object surface.

9.2 Results

The accuracy of the shape-from-focus algorithms was analyzed using a steel ball sample
that was 1590,m in diameter. The ball was sand-papered to give it a rough surface. A
camera 1mage of the ball, under bnght field illumination, is shown in Fig.15a. Due 10 the
small depth of focus of the microscope. some areas of the ball are defocused. The bnght
field illuminavon decreases the texture intensity from the flat top section of the ball 10 the
steep houndary arca. As it 15 difficult 1o perceive the shape of most of the samples we have
used from their camera 1images, we have also included scanning electron microscope (SEM,
images of the samples. We hope that these images will provide sufficient shape cues to the
reader. An SEM image of the ball is shown in Fig.15b. Incremental displacement of Ad =
100 ;.m were used to obtain 13 1images of the bal, and a 5x5 SML operator was applied to the
image sequence 1o obtain focus measures. Depth maps of the ball, generated by the course
resolution and Gaussian interpolation algorithms, are showr in Fig.15¢ and 15d, respectively.
The known size and location of the ball were used to obtain error maps by subtracting a
smooth ball from the two depth maps. It 1s difficult to define the accuracy of the method
as it depends on many factors: the surface texture, depth of focus of the imaging system,
and the incremental displacement Ad. The table shown in Fig.15e shows the error statistics
computed from the error maps corresponding to the two algorithms. A total of 23235 image
pixels lie within the boundary of the ball. The number of depth values computes by each
algonthm depends on the selected values for the thresholds T,, T3, and T,. The error map
corresponding to the Gaussian interpolation algorithm is shown in Fig.15f. We see that there
15 no obvious correlition between the errors and the surface orientation.

Fig .16 to 19 show samples with different surface reflectance and roughness properties,
and their depth maps obtained using the Gaussian interpolation algorithm. All sample are
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approximately 100 um in width and an incremental displacement of Ad = 10 um was used
in all cases to obtain sequences of about 10 images each. Fig 16a and 16b show the camera
and SEM images or a tungsten paste filling in a via-hole on a substrate [15] that is used
to establish electrical connections between different components. Conditions such as excess
filling and lack of filling cause electrical defects such as short and open circuits. The sample
shown in Fig.16 has a bump on its surface, indicating excess filling. The specular reflectance
and variable size of the tungsten particles gives the srriace a random texture. The white
background (Fig.16a) is the substrate area that has very weak texture. For this sample, we
selected the threshold values to classify the substrate area as background. An arbitrary depth
value 1s assigned to the background region.

Fig.17 shows another via-hole sample. In this case, the substrate and filling are
hardened by baking. The baking process changes the reflectance and textre of the filling
and also increases the texture content of the substrate. From the SEM image we see that the
filling has some contamination on its surface and a concavity in the center. For this sample,
the algonithm threshold values wecre selected to obtain the depth of the substrate area to0.
To accommodate for the large size of substrate texture elements, a step size ot 2 was used.
Two different views of the sample’s depth map are shown in Fig.17c and d. } shows
another baked via-hole sample. In this case, the the via-hole is not sufficient d with
tungsten paste. Again, two views of the computed depth maps are shown.

Fig.19 shows a via-hole filling that is plated with Nickel. The plating proc: .acreases
the particale size and each parucle is highly specular in reflectance. Due to th-  phencul

shape of the particles (Fig.19b), the bright field illumination produces a single tat the
center of each paricles and some of the steep surface areas do not reflect a- “ht. To
demonstrate the use of special illumination, we used a muld-spot light source . aminate

the sample and obtaired images of higher texture content, such as the one shown in Fig.19¢.
The computed depth map of the sample is shown in Fig.19d.

9.3 Discussion

The above expenments validate the effectiveness of the shape-from-focus method. The

Gaussian interpolation algorithm performs stably over a wide range of textures. --ors in
computed depth estmates result from factors, such as image rise, Gaussian ap; - mation
of the SML focus measure function, and weak textures in sc...e image areas. S. = detail

of the surface roughness is lost due to the use of a finite size window to compute " = SML
focus measures.

Most of the above experiments were conducted using bright field illum: n. In
the last experiment, we demonstrated the use of special illumination to enhance 1 uahity
of textured images. Furthermore, light patterns can be projected on smooth sur:. .., both
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diffuse and specular,to generate textured images. Hernce, by using special illumination, the
shape-from-focus method can also be applied to smooth surfaces.

In the above experiments, object displacement and image aquisition were manually
initated. In a high-speed implementation, the object can be moved continuously, while
images are obtained at fixed intervals of time. By using customized hardware, the SML
focus operator can be applied to each image in a frame-time and the Gaussian interpolation
can be implemented by using look-up tables. We estimate that a high-speed implementation
of the method can generate surface depth maps in less than 1 second.

10 Conclusion

In this paper, we have presented shape-from-focus as a new method of extracting the shape
of rough surfaces.

o To measure the quality of image focus, we developed the SML operator. By evaluating
the SML operator and comparing it to other existing operators, we found that the SML
operator is particularly well-suited for measuring the focus of textured images.

o We developed and tested two depth estimation algorithms and found, through numerous
experiments, that the Gaussian interpolation algorithm produces accurate results for a
variety of textures.

o The local nature of the depth estimation technique enables it to adapt to substantial
variaions in image texture.

e Though we have concentrated on rough surfaces in this paper, the shape-from-focus
method can be directly applied to smooth textured surfaces. Smooth non-textured
surfaces can also be handled by using special illumination techniques.
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Figure 13: Photograph of the experimental set-up.
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Figure 14: Schematic diagram of experimental set-up.
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Diameter of Test Sphere: 1590 pm
Coarse Gaussian
Interpolation Interpolation
Number of Points 22682 23257
Mean Error (i, 7961 3 857
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can Absolute 30.32 13.815
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(e) Error statistics.

(f) Error map: Gaussian interpolation.

Figure 15: Steel ball. (continucd)
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